Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jie Li, ${ }^{\text {a }}$ Jian-Ping Ma, ${ }^{\text {a }}$ Ru-Qi Huang a and Yu-Bin Dong ${ }^{b}$ *
${ }^{\text {a }}$ Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry, Chemical Engineering and Materials Science, and Shandong Key Laboratory of Functional Chemical Materials, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
yubindong@sdnu.edu.cn

6-[4-(2-Chloroethyloxy)naphthyl]fulvene. Corrigendum

In the paper by Li, Ma, Huang \& Dong [Acta Cryst. (2005), E61, o3901-o3902], the correspondence author is incorrectly indicated. The correct correspondence author is given here, together with revised postal and e-mail addresses.

Received 5 November 2005 Accepted 16 November 2005 Online 23 November 2005

[^0]Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jie Li,* Jian-Ping Ma, Ru-Qi Huang and Yu-Bin Dong

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: lijie9658@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.062$
$w R$ factor $=0.145$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-[4-(2-Chloroethyloxy)naphthyl]fulvene

The title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}$, has been synthesized by reacting cyclopentadiene with 4-(2-chloroethyloxy)naphthaldehyde. The naphthalene and cyclopentadienyl rings make a dihedral angle of $42.4(1)^{\circ}$.

Comment

Fulvene is widely used in organic synthesis because of its special structure and characteristic reactivity (Stone \& Little, 1984). It is well known that fulvene is a good candidate for the synthesis of organometallic coordination polymers or supramolecular complexes (Wang et al., 2003).

Received 29 September 2005
Accepted 24 October 2005
Online 31 October 2005

We prepared the title compound, (I), which is a new fulvene derivative (see scheme). Single-crystal analysis of (I) reveals that the asymmetric unit consists of one molecule (Fig. 1). The naphthalene and cyclopetadienyl rings make a dihedral angle of $42.4(1)^{\circ}$. The dihedral angle between the plane defined by atoms $\mathrm{O} 1 / \mathrm{C} 11 / \mathrm{C} 12$ and the naphthalene ring plane is $7.9(2)^{\circ}$. The largest dimension of the molecule, estimated as the $\mathrm{Cl} 1 \cdots \mathrm{H} 3$ separation, is $12.65 \AA$ (H3 is bonded to C3). Other dimensions (Table 1) are as expected.

Experimental

All organic solvents were of reagent grade and were used without further purification. Cyclopentadiene and 4-(2-chloroethyloxy)naphthaldehyde were prepared according to the literature methods (Korach et al., 1973; Wang et al., 2003). A solution of tetrahydropyrrole $(0.5 \mathrm{ml})$ in methanol $(5 \mathrm{ml})$ was added to a solution of 4-(2chloroethyloxy)naphthaldehyde ($0.75 \mathrm{~g}, 3.20 \mathrm{mmol}$) and cyclopentadiene ($1.17 \mathrm{ml}, 14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. The mixture was stirred overnight at 298 K , and then acetic acid $(0.42 \mathrm{ml})$ and water $(5 \mathrm{ml})$ were added. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant to afford (I) as an orange solid ($0.75 \mathrm{~g}, 83 \%$). Single crystals of (I) were obtained by layering n-hexane on to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the crude reaction product. Single crystals were obtained after a period of one week at 298 K .

organic papers

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}$
$M_{r}=282.75$
Orthorhombic, Pbca
$a=12.764(9) \AA$
$b=7.361(5) \AA$
$c=31.03(2) \AA$
$V=2915(4) \AA$
$Z=8$
$D_{x}=1.288 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 1999 $)$
$T_{\min }=0.905, T_{\max }=0.982$
16129 measured reflections

3175 independent reflections
1764 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-15 \rightarrow 16$
$k=-9 \rightarrow 8$
$l=-39 \rightarrow 39$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0557 P)^{2}\right.} \\
&+0.0844 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.324(3)$	$\mathrm{C} 10-\mathrm{O} 1$	$1.362(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.332(4)$	$\mathrm{C} 11-\mathrm{O} 1$	$1.428(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.345(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.489(3)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.457(3)$	$\mathrm{C} 12-\mathrm{Cl} 1$	$1.770(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$127.5(2)$	$\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 11$	$118.32(19)$

All H atoms were included in calculated positions and refined as riding on their carrier C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}$

Figure 1
The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
distances constrained to 0.93 (aromatic CH) or $0.97 \AA$ (methylene CH_{2}).

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant Nos. 20371030 and 20174023) and the Open Foundation of the State Key Laboratory of Crystal Materials.

References

Bruker (1999). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Korach, M., Nielson, D. R. \& Rideout, W. H. (1973). Organic Synthesis Collection Vol. V, 414-418
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stone, K. J. \& Little, R. D. (1984). J. Org. Chem. 49, 1849-1853.
Wang, H., Sun, Q., Li, Y. \& Li, X. (2003). Thin Solid Films, 426, 40-46.

[^0]: (C) 2005 International Union of Crystallography

 Printed in Great Britain - all rights reserved

